##关系型数据库设计 ###parent_id |id |name | parent_id| |---|-------|-----------| |1 |A |NULL | |2 |B |1 | |3 |C |1 | |4 |D |2 |
优缺点:
- Pros: Easy to understand, fast to insert and move
- Cons: Requires multiple queries to get whole subtrees
针对查询问题,可以应用缓存来解决
###left&right
id | name | parent_id | left | right |
---|---|---|---|---|
1 | A | NULL | 1 | 8 |
2 | B | 1 | 2 | 5 |
3 | C | 1 | 6 | 7 |
4 | D | 2 | 3 | 4 |
-
Pros: Lookup up entire subtrees with a single query (fast), intrinsic ordering of children
-
Cons: Slow to insert and move, due to many modifications of existing records
针对修改问题,由于菜单读多写少,可以接受
###记录path
|id |name |parent_id | path | |:--:|:--:|:--:|---| |1 |A |NULL| 1- | |2 |B |1| 1-2- | |3 |C |1| 1-2- | |4 |D |2| 1-2-4- |
查询快 修改麻烦
##文档型数据库 ###直接存json
{ "name": "A", "children": [ {"name": "B", "children": [{"name": "D"}]}, {"name": "C"} ]}
- Pros: Native tree-like data structure, intrinsic ordering of children
- Cons: Could get ugly with larger and more complex documents, concurrency is limited
增加version,进行版本/乐观锁并发控制
###使用parent_id
{"_id": "A"}{"_id": "B", "parent_id": "A"}{"_id": "C", "parent_id": "A"}{"_id": "D", "parent_id": "B"}
- Pros: Simple to understand, easy to find parent
- Cons: Needs good view or index to find child documents, no intrinsic ordering of children
###使用children
{"_id": "A", "children": ["B", "C"]}{"_id": "B", "children": ["D"]}{"_id": "C"}{"_id": "D"}
Pros: Simple to understand, easy to find children, intrinsic ordering of children Cons: Needs good view or index to find parent document
###索引法
{ "leaf": "A", "children": [ {"leaf": "B", "children": [{"leaf": "D"}] }, {"leaf": "C"} ]}{"_id": "A", ...}{"_id": "B", ...}{"_id": "C", ...}{"_id": "D", ...}
-
Pros: Two lookups to find any node, native tree data structure, data separate from tree, intrinsic ordering
-
Cons: Traversing from one node to another requires referring back to the tree data structure (maybe this is not a bad thing — it can be cached), concurrency is limited
##存储层级以及路径 Storing the node path along with hierarchy level int the document.
{ele: "a", path: "/a" , lvl:1} {ele: "b", path: "/a/b", lvl:2} {ele: "c", path: "/a/b/c", lvl:3}
- Pros : Easy to fetch a subtree of a given node. Traversing up a tree is not that difficult. Getting all parent nodes of c:db..find({"path" : {"$in" : ["/a", "/a/b"] } }).
- Cons : If hierarchical changes are frequent, then path update is needed but still easier than other models.
##doc